The Deposition of Fog Droplets on Steam Turbine Blades by Turbulent Diffusion

Author:

Yau K. K.1,Young J. B.1

Affiliation:

1. Whittle Laboratory, University of Cambridge, Cambridge, England

Abstract

A theoretical approach for calculating the rate of deposition of fog droplets on steam turbine blades by turbulent diffusion is described. The theory is similar to that which has proved successful for predicting deposition of small particles in pipe flow and includes a recent correlation for the inertia-moderated regime. A reliable estimate of the blade surface shear stress distribution is required and is obtained by a quasi-three-dimensional inviscid flow calculation to give the blade surface velocity distribution, followed by a two-dimensional boundary layer calculation. The theory has been applied to two representative case studies. The first involves deposition on the final stage blading of the low-pressure cylinder of an operating 500 MW turbine, and the second concerns deposition in a high-pressure, wet steam turbine. Results are presented showing the effect of fog droplet size, surface roughness, and other flow parameters on the deposition rate. A comparison is made between the rates of deposition by diffusional and purely inertial mechanisms. In low-pressure turbines these are of comparable magnitude, but in high-pressure machines diffusional deposition may dominate.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and design of wet-steam stages;Advances in Steam Turbines for Modern Power Plants;2022

2. Condensation in Radial Turbines—Part I: Mathematical Modeling;Journal of Turbomachinery;2018-09-28

3. Investigation of Energy Loss on Fractional Deposition in Last Stages of Condensing Steam Turbine Due to Blade Shape and Moisture Droplet Size;Journal of Engineering for Gas Turbines and Power;2018-04-12

4. Analysis and design of wet-steam stages;Advances in Steam Turbines for Modern Power Plants;2017

5. Droplet deposition in radial turbines;European Journal of Mechanics - B/Fluids;2017-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3