Affiliation:
1. Department of Mechanical Engineering, University College of Swansea, Swansea, SA2 8PP, U.K.
Abstract
Finite element models are based upon known physical characteristics. But there are two main sources of error, namely (i) ill-defined joints and boundary constraints, and (ii) overstiffening due to the application of shape function discretization. It is difficult to correct an ill-defined constraint without simultaneously compensating (to some unknown degree) for discretization overstiffening. A general approach is proposed whereby the measured eigendata from a physical system are altered to resemble the eigendata of a discrete system with identical (but unknown) constraints. With the effects of discretization overstiffening present in both the adjusted measurements and the model it is straightforward to obtain progressively improved estimates of the constraint stiffnesses by using the least-squares method. The proposed approach may be considered to be equivalent to a model reduction scheme. Specific methods are applied to the correction of a stiffness in the joint of a finite element framework model.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献