Correction of Joint Stiffnesses and Constraints for Finite Element Models in Structural Dynamics

Author:

Mottershead John E.1,Weixun Shao1

Affiliation:

1. Department of Mechanical Engineering, University College of Swansea, Swansea, SA2 8PP, U.K.

Abstract

Finite element models are based upon known physical characteristics. But there are two main sources of error, namely (i) ill-defined joints and boundary constraints, and (ii) overstiffening due to the application of shape function discretization. It is difficult to correct an ill-defined constraint without simultaneously compensating (to some unknown degree) for discretization overstiffening. A general approach is proposed whereby the measured eigendata from a physical system are altered to resemble the eigendata of a discrete system with identical (but unknown) constraints. With the effects of discretization overstiffening present in both the adjusted measurements and the model it is straightforward to obtain progressively improved estimates of the constraint stiffnesses by using the least-squares method. The proposed approach may be considered to be equivalent to a model reduction scheme. Specific methods are applied to the correction of a stiffness in the joint of a finite element framework model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3