Closed-Form Solutions of Bending-Torsion Coupled Forced Vibrations of a Piezoelectric Energy Harvester Under a Fluid Vortex

Author:

Zhao X.1,Zhu W. D.2,Li Y. H.3

Affiliation:

1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China

2. Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250

3. School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

Abstract Vibration energy harvesting problems have strongly developed in recent years. However, many researchers just consider bending vibration models of energy harvesters. As a matter of fact, torsional vibration is also important and cannot be ignored in many cases. In this work, closed-form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester subjected to a fluid vortex are derived. Timoshenko beam model is used for modeling the energy harvester, and the extended Hamilton’s principle is used in the modeling process. Since piezoelectric effects in both bending and torsional directions are considered, two kinds of electric coupling effects appear in forced vibration equations, and a new model for the electric circuit equation is developed. Lamb–Oseen vortex model is considered in this study. Both the external aerodynamic force and moment are simple harmonic loads. Three damping coefficients are considered in the present model. Based on Green’s function method, closed-form solutions of the piezoelectric energy harvester subjected to the fluid vortex are derived. Some published results are used to verify the present solutions. It can be concluded through analysis that when torsional vibration is considered, the bandwidth of the high energy area of the voltage becomes large and the bending-torsion coupled vibration energy harvester can produce more power than a transverse vibration energy harvester.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3