Optimization of Shift Control Trajectories for Step Gear Automatic Transmissions

Author:

Čorić Mirko1,Ranogajec Vanja1,Deur Joško1,Ivanović Vladimir2,Eric Tseng H.2

Affiliation:

1. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, Zagreb HR-10002, Croatia e-mail:

2. Ford Research and Innovation Center, 2101 Village Road, Dearborn, MI 48121 e-mail:

Abstract

New generation of torque converter automatic transmissions (ATs) include a large number of gears for improved fuel economy and performance. Control requirements for such a transmission become more demanding, which calls for the development of new shift control optimization tools. A pseudospectral collocation method is used in the paper to optimize AT clutch and engine control trajectories for comfortable and efficient shifts. Since the optimization method requires a smooth formulation of plant model, the emphasized clutch model nonlinearity around the zero slip speed has been found to be a major difficulty to be resolved through proper modeling of the optimization problem. Therefore, different approaches of describing the friction behavior are considered and assessed, starting from simple static models, through dynamics models, toward torque-source approaches subject to the clutch passivity constraint. Apart from the conventional optimization approach based on minimizing the cost function (including the vehicle jerk and clutch energy loss terms), the so-called feasibility approach based on restricting the cost through an inequality constraint is considered, as well. The proposed optimization method has been verified on a characteristic example of 10-speed AT for both single- and double-transition shifts (DTSs). It has been found out that the clutch passivity constraint-based approach results in numerically most efficient optimizations for a wide range of shift tasks and scenarios.

Funder

Ford Motor Company

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3