Relation Between Structural Intensity-Based Scalars and Sound Radiation Using the Example of Plate-Rib Models

Author:

Schaal Clarissa1,Ebert Johannes2,Bös Joachim1,Melz Tobias3

Affiliation:

1. System Reliability and Machine Acoustics SzM, Department of Mechanical Engineering, Technische Universität Darmstadt, 64289 Darmstadt, Germany e-mail:

2. Structure-borne Sound and Vibrations, Department of Structural Dynamics, BMW Group, 80788 München, Germany e-mail:

3. Professor System Reliability and Machine Acoustics SzM, Department of Mechanical Engineering, Technische Universität Darmstadt, 64289 Darmstadt, Germany e-mail:

Abstract

The ability of the structural intensity (STI) to predict changes in the sound radiation of structures due to geometric modifications is investigated using the academic example of plate-rib models. All models consist of the same plate and are modified by attaching a rib, whose position, orientation, and length are varied. Various scalar quantities are derived from the STI and quantitatively compared to the equivalent radiated sound power (ERP) for each model. Based on this comparison the relation between the STI-based scalars and the ERP is studied to determine an STI-based scalar that can serve as the objective function for numerical structural optimizations. The influence of the rib parameters on the most promising STI-based scalar is analyzed by means of a variance-based sensitivity analysis. The STI pattern of those models with very high and very low ERP values are additionally analyzed to describe the characteristics of STI. The results of this study indicate that the STI pattern of models with low ERP has paths and vortices that can be more clearly identified compared to those in models with high ERP. The angular orientation of the rib has by far the highest influence on changes in STI and ERP. The results reveal a correlation between the energy flow into a specific region of a structure, an STI-based scalar, and the ERP. Therefore, the vibrational energy flow can indeed serve as an objective function for numerical structural optimizations aiming at reducing the sound radiation.

Publisher

ASME International

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3