Material Properties of Rat Middle Cerebral Arteries at High Strain Rates

Author:

David Bell E.1,Converse Matthew2,Mao Haojie3,Unnikrishnan Ginu3,Reifman Jaques3,Monson Kenneth L.4

Affiliation:

1. Department of Bioengineering, University of Utah, Salt Lake City, UT 84112

2. Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112

3. Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, U.S. Army Medical Research and Materiel Command, Frederick, MD 21702

4. Department of Bioengineering, University of Utah, Salt Lake City, UT 84112; Department of Mechanical Engineering, University of Utah, 1495 E. 100 S., MEK 1550, Salt Lake City, UT 84112 e-mail:

Abstract

Traumatic brain injury (TBI), resulting from either impact- or nonimpact blast-related mechanisms, is a devastating cause of death and disability. The cerebral blood vessels, which provide critical support for brain tissue in both health and disease, are commonly injured in TBI. However, little is known about how vessels respond to traumatic loading, particularly at rates relevant to blast. To better understand vessel responses to trauma, the objective of this project was to characterize the high-rate response of passive cerebral arteries. Rat middle cerebral arteries (MCAs) were isolated and subjected to high-rate deformation in the axial direction. Vessels were perfused at physiological pressures and stretched to failure at strain rates ranging from approximately 100 to 1300 s−1. Although both in vivo stiffness and failure stress increased significantly with strain rate, failure stretch did not depend on rate.

Funder

Henry M. Jackson Foundation

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3