Optimization of a Packed Bed Thermal Energy Storage Unit

Author:

Torab H.1,Beasley D. E.2

Affiliation:

1. Department of Mechanical Engineering, Gannon University, Erie, PA 16506

2. Department of Mechanical Engineering, Clemson University, Clemson, SC 29631

Abstract

The optimization of the design of a packed-bed thermal energy storage unit is presented. A one-dimensional, transient, two-phase model is chosen for the packed bed which assumes uniformity at each cross section within the packing. The governing equations for the time dependent temperature distributions in both the solid and fluid phases are solved using a fully implicit formulation. The accuracy of the numerical method is demonstrated by comparison with experimental measurements of temperature distribution in a randomly packed bed of uniform spheres. The goal of the optimization is to achieve maximum utilization of the thermal energy storage and recovery capabilities of the storage medium for a given set of operating conditions. The optimum combination of bed length, size of the packing particles, and relative size of the bed cross section to the particle diameter is determined, subject to constraints on the maximum allowable pressure drop across the packing, the maximum outlet fluid temperature, and the total amount of supplied energy. The thermodynamic availability is examined as the measure of storage utilization. The monotinicity method is utilized for the optimization process. This method identifies a global optimum without any special computations, and prevents acceptance of false optimum solutions, as could be generated by numerical techniques. The results of the study provide guidelines for choosing the size of the packing and the packing particle subject to the constraints for a practical operating system.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3