A Simple Model of Bipedal Walking Predicts the Preferred Speed–Step Length Relationship

Author:

Kuo Arthur D.1

Affiliation:

1. Dept. of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109-2125

Abstract

We used a simple model of passive dynamic walking, with the addition of active powering on level ground, to study the preferred relationship between speed and step length in humans. We tested several hypothetical metabolic costs, with one component proportional to the mechanical work associated with pushing off with the stance leg at toe-off, and another component associated with several possible costs of forcing oscillations of the swing leg. For this second component, a cost based on the amount of force needed to oscillate the leg divided by the time duration of that force predicts the preferred speed–step length relationship much better than other costs, such as the amount of mechanical work done in swinging the leg. The cost of force/time models the need to recruit fast muscle fibers for large forces at short durations. The actual mechanical work performed by muscles on the swing leg appears to be of relatively less importance, although it appears to be minimized by the use of short bursts of muscle activity in near-isometric conditions. The combined minimization of toe-off mechanical work and force divided by time predicts the preferred speed–step length relationship.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3