Turbulent Heat Transfer Augmentation Using Microscale Disturbances Inside the Viscous Sublayer

Author:

Kozlu H.1,Mikic B. B.1,Patera A. T.1

Affiliation:

1. Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139

Abstract

We report here on an experimental study of heat transfer augmentation in turbulent flow. Enhancement strategies employed in this investigation are based on the near-wall mixing processes induced in the sublayer through appropriate wall and near-wall streamwise-periodic disturbances. Experiments are performed in a low-turbulence wind-tunnel with a high-aspect-ratio rectangular channel having either (a) two-dimensional periodic microgrooves on the wall, or (b) two-dimensional microcylinders placed in the immediate vicinity of the wall. It is found that micro-disturbances placed inside the sublayer induce favorable heat-transport augmentation with respect to the smooth-wall case, in that near-analogous momentum and heat transfer behavior are preserved; a roughly commensurate increase in heat and momentum transport is termed favorable in that it leads to a reduction in the pumping power penalty at fixed heat removal rate. The study shows that this favorable performance of microcylinder-equipped channel flows is achieved for microcylinders placed inside y+ ≃20, implying a dependence of the optimal position and size on Reynolds number. For microgrooved channel flows, favorable augmentation is obtained for a wider range of Reynolds numbers; however, optimal enhancement still requires a matching of geometric perturbation with the sublayer scale.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HEAT TRANSFER PERFORMANCE OF A WAVY CHANNEL AND RELATED TURBULENCE STRUCTRE;Proceeding of Compact Heat Exchangers and Enhancement Technology for the Process Industries - 2003;2023

2. Deposition of aerosol particles on rough surfaces inside a test chamber;Building and Environment;2009-10

3. The evaporation of a saturated porous layer inside an inclined airflow channel;International Journal of Heat and Fluid Flow;2007-06

4. Heat and mass transfer for liquid film evaporation along a vertical plate covered with a thin porous layer;International Journal of Heat and Mass Transfer;2006-06

5. Experimental Study on Heat Transfer in Ducts with Winglet Disturbances;Heat Transfer Engineering;2003-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3