Fatigue of AZ91E-T6 Cast Magnesium Alloy

Author:

Goodenberger D. L.1,Stephens R. I.1

Affiliation:

1. Mechanical Engineering Department, The University of Iowa, Iowa City, IA

Abstract

The purpose of this research was to obtain room temperature fatigue behavior of AZ91E-T6 cast magnesium alloy and to determine if commonly used models that depict fatigue behavior are applicable to this cast alloy. Axial strain-controlled fatigue behavior using cylindrical specimens were employed to determine low cycle fatigue behavior with strain ratios R = εmin/εmax = 0, −1, and −2. The conventional log-log total strain low cycle fatigue model properly represented the R = −1 axial fatigue data. Significant mean stress relaxation occurred for all R = 0 and −2 axial fatigue tests. However, for the smaller strain amplitude tests with R = 0, sufficient mean stresses were retained such that fatigue life was reduced. The mean strains/stresses had little influence on the cyclic stress-strain curve which exhibited cyclic strain hardening. Mean stress effects were analyzed using the Morrow, SWT and Lorenzo-Laird models and similar, but oftentimes nonconservative, calculations resulted. Region I and II fatigue crack growth behavior was determined using C(T) speciments with load ratios R = Pmin/Pmax = 0.05 and 0.5. Values of ΔKth and (ΔKth)eff were less than 1.5 MPa m and the Paris equation slopes were between 3.3 and 3.9. Quasi-cleavage was predominant for both fatigue crack growth and final fracture regions. The commonly used low cycle fatigue and fatigue crack growth models appear to reasonably represent most of the results with this AZ91E-T6 cast magnesium alloy.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3