The Effect of Fiber Diameter Distribution on the Elasticity of a Fiber Mass

Author:

Alkhagen Mårten1,Toll Staffan1

Affiliation:

1. Department of Applied Mechanics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; School of Textiles, University College of Borås, SE-50190 Borås, Sweden

Abstract

A random mass of loose fibers interacting by fiber-fiber contact is considered. As proposed in a previous paper, the elastic response is modeled based on the statistical mechanics of bending and torsion of fiber segments between fiber-fiber contact points. Presently we show how the statistical approach can be used to account for a distribution of fiber diameters rather than just a single diameter. The resulting expression has the same form and the same set of parameters as its single-diameter counterpart, except for two dimensionless reduction factors, which depend on the fiber diameter distribution only and reduce to unity for monodisperse fibers. Uniaxial compressibility experiments are performed on several materials with different bimodal fiber diameter distributions and are compared to model predictions. Even though no additional parameters were introduced to model the effect of mixed fiber diameters, the behavior is accurately predicted. Notably, the effect of the nonuniform fiber diameter is strong: A mixture of two fiber diameters differing by a factor of 2 can reduce the response by an order of magnitude, compared to the case of uniform diameter.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference16 articles.

1. Note on the Compressibility of Wool;van Wyk;J. Text. Inst.

2. Numbers of Fiber-to-Fiber Contacts in General Fiber Assemblies;Komori;Text. Res. J.

3. A Modified Analysis of the Microstructural Characteristics of General Fiber Assemblies;Pan;Text. Res. J.

4. Analyzing the Compressibility of a Random Fiber Mass Based on the Modified Theory of Fiber Contact;Komori;Text. Res. J.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3