Swirling Flow Regimes and Gas Carry-Under in Gas–Liquid Cylindrical Cyclone Separator in a Separated Outlet Configuration

Author:

Kolla Srinivas Swaroop1,Mohan Ram S.1,Shoham Ovadia2

Affiliation:

1. Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK 74104

2. McDougall School of Petroleum Engineering, The University of Tulsa, Tulsa, OK 74104

Abstract

Abstract Gas carry-under (GCU) and the corresponding gas volume fraction (GVF) in the gas–liquid cylindrical cyclone (GLCC©)2 liquid outlet occurs even within its normal operational envelope (OPEN). Few studies are available on GLCC, GCU, and GVF, which have been carried out in a GLCC operated in a metering loop configuration. This study focuses on GLCC GCU and GVF in swirling flow under separated outlet configuration with active control, which increases the GLCC OPEN significantly. A state-of-the-art test facility is used to acquire extensive GCU and GVF data for both air–water and air–oil flow in a 3″ diameter GLCC. The GLCC is equipped with three sequential trap sections to measure the instantaneous GVF and gas evolution in its lower part below the inlet. Also, gas trap sections are installed in the GLCC liquid outlet leg to measure the overall time-averaged GCU and GVF. The extensive acquired data shed light on the complex flow behavior in the lower part of the GLCC and its effect on the GCU and GVF in the GLCC. Tangential wall jet impingement from the GLCC inlet is the cause of gas entrainment and swirling in the lower GLCC body. The swirling flow mechanisms in the lower part of the GLCC are identified, which affect the GCU and GVF. The liquid viscosity and surface tension also affect the results. The GCU and GVF in the GLCC liquid outlet reduce as the superficial liquid velocities are increased for both air–oil and air–water flows, whereby the superficial gas velocities do not have a significant effect. The GCU and GVF for air–water flow are three orders of magnitude lower as compared to the air–oil flow.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference21 articles.

1. Analysis of Gas–Liquid Cylindrical Cyclone Separator With Inlet Modifications Using Fluid-Structure Interaction;Kolla;ASME J. Energy Resour. Technol.,2019

2. The State-of-the-Art of Gas–Liquid Cylindrical Cyclone Compact Separation Technology;Shoham;J. Pet. Technol.,1998

3. Technologies Under Development: Design and Development of Gas–Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow;Mohan,1999

4. Review of the State-of-the-Art Gas–Liquid Cylindrical Cyclone (GLCC) Technology—Field Applications;Kouba,2006

5. Cyclone for Gas/Oil Separation;Nebrensky,1980

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3