Design for Inspectability: A Framework to Increase Inspectability of Additive Manufacturing Parts for Pulse-Echo Ultrasonic Inspection Methods

Author:

Mahan Tobias1,Katch Lauren2,Arguelles Andrea P.3,Menold Jessica4

Affiliation:

1. Penn State University Department of Mechanical Engineering, , University Park , PA 16803

2. Penn State University Department of Engineering Science and Mechanics, , University Park , PA 16802

3. Penn State University Department of Engineering Science and Mechanics, , University Park , PA 16801

4. Penn State University Department of Engineering Design and, Mechanical Engineering, , University Park , PA 16801

Abstract

Abstract Additive manufacturing (AM) is used to produce load-bearing, safety-critical components in industries like aerospace, automotive, and medical devices. Designers can create AM components with complex internal features, organic topologies, and lattice structures to reduce part mass or part count. However, such complex features can make designs difficult or impossible to inspect using mature nondestructive testing (NDT) methods. Professional organizations suggest designers keep quality assurance and quality control (QA/QC) in mind early in the design process. The Design for Inspectability (DfI) framework is suggested as a way of meeting the need for early-stage QA/QC considerations. This work presents a case study, where a group of designers considered one type of NDT, known as Pulse-Echo Ultrasonic (PEU) testing. Using heuristics derived from relevant literature, designers were able to create designs with increased inspectability. This improved inspectability came at the cost of other design objectives, however, such as strength and mass. This implies that certain design objectives may be inversely related to increased inspectability, raising significant concerns for the field. This work marks the first step toward mapping out the trade-offs between inspection and performance objectives.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3