Study of Using Exhaust Gas Recirculation on a Gas Turbine for Carbon Capture

Author:

Burnes Dan1,Saxena Priyank1,Dunn Paul1

Affiliation:

1. Solar Turbines, Incorporated, San Diego, CA

Abstract

Abstract The growing call of minimizing carbon dioxide and other greenhouse gases emitting from energy and transportation products will spur innovation to meet new stringent requirements while striving to preserve significant investments in the current infrastructure. This paper presents quantitative analysis of exhaust gas recirculation (EGR) on industrial gas turbines to enable carbon sequestration venturing towards emission free operation. This study will show the effect of using EGR on gas turbine performance and operation, combustion characteristics, and demonstrate potential hybrid solutions with detailed constituent accounting. Both single shaft and two shaft gas turbines for power generation and mechanically driven equipment are considered for application of this technology. One key element is assessing the combustion system operating at reduced O2 levels within the industrial gas turbine. With the gas turbine behavior operating with EGR defined at a reasonable operating state, a parametric study shows rates of CO2 sequestration along with quantifying supplemental O2 required at the inlet, if needed, to sustain combustion. With rates of capture known, a further exploration is examined reviewing potential utilities, monetizing these sequestered constituents. Ultimately, the objective is to preview a potential future of operating industrial gas turbines in a non-emissive and in some cases carbon negative manner while still using hydrocarbon fuel.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3