Improvement of Turboshaft Restart Time Through an Experimental and Numerical Investigation

Author:

Ferrand Antoine1,Bellenoue Marc2,Bertin Yves2,Marconi Patrick3

Affiliation:

1. Safran Tech, Magny-les-Hameaux, France

2. ISAE-ENSMA, Chasseneuil-du-Poitou, France

3. Safran Power Units, Toulouse, France

Abstract

Abstract Inflight shutdown of one engine for twin-engine helicopters have proven beneficial for fuel consumption. A new flight mode is then considered, in which one engine is put into sleep mode (the gas generator is kept at a stabilized, sub-idle speed by means of an electric motor, with no combustion), while the second engine runs almost at nominal load. The ability to restart the engine in sleep mode is then critical for safety reasons. Indeed, the certification of this flight mode involves ensuring a close-to-zero failure rate for in-flight restarts as well as a fast restart capability of the shutdown engine. In this paper, the focus is made on improving the restart time of the shutdown turboshaft engine. Fast restart capability is necessary for flight management reasons. Indeed, in case of a failure of the engine operating close to nominal load while the other one is in sleep mode, there is no more power available and the helicopter can lose up to 15–20 meters per second during autorotation. The restart time becomes a critical parameter to limit the loss of altitude. In the configuration studied, the fast restart is achieved thanks to the electric motor designed to deliver a high torque to the gas generator shaft. This electric motor is powered by an additional battery, more powerful than the conventional one dedicated for standard restarts. The aim of the paper is to assess the potential restart time saving using an approach combining test rig data analysis and numerical results generated by a thermodynamic model able to simulate at very low rotational speed. A gas turbine engine starting process is composed of two main phases: the light-up phase and the acceleration phase. It is important to understand the detailed phenomenology of these two phases as well as the various sub-systems involved, first to highlight the influencing parameters of both phases and then to establish an exhaustive listing of the possible time optimizations. From the test rig campaign, conducted at Safran Helicopter Engines on a high power free turbine turboshaft engine, we are able to accurately break down the phases of the start-up sequence, which helps us to identify what steps of the sequence worth shortening. With the engine performance thermodynamic model, we can then use the information gathered from the test rig analysis to further predict how to save time and to give guidelines for developing new control strategies. The results of this study show that a fast restart going from sleep mode to max power speed can be up to 60% faster than a conventional restart going from sleep mode to idle speed. This is significantly faster, especially if one takes into account the higher final speed targeted by the fast restart.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3