Numerical Sensitivity Study on the Design of a Transonic Aeroelastic Compressor Rig

Author:

Tian Simeng1,Gutierrez Salas Mauricio1

Affiliation:

1. KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

Abstract In modern transonic compressors, forced response can occur at high-order modes and at high-reduced frequencies. To understand this phenomenon, a new cascade test-rig is being built to provide configurations and validations for the forced response simulations of transonic compressors. With the aid of Computation Fluid Dynamics (CFD) optimizations, the test section shape was roughly determined before. The purpose of this paper is to provide the finalization process of the cascade test-rig design including a transonic nozzle and blade tip gaps. Hence, the steady and unsteady simulations are employed based on three different geometries: test section, test rig with nozzle, and test rig with 1% tip gap. The simulation results show that the unsteadiness in the test rig is related mainly to the oscillation performance of the shock waves in the passage. The comparison in the test rig with and without tip gap confirms that tip gap can reduce the unsteady pressure. The unsteady pressure reflection due to the tailboards, especially on the bottom tailboards, indicates this problem needs to be thoroughly considered in the installation and testing.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3