Effect of Initial Surface Roughness on Water Erosion Resistance of Last Stage Blade Substrate of Steam Turbine

Author:

Li Fang1,Wang Shunsen1,Di Juan1,Feng Zhenping1

Affiliation:

1. Xi'an Jiaotong University, Xi'an, China

Abstract

Abstract In order to study the effect of initial surface roughness on water droplet erosion resistance of last stage blade substrate of steam turbine, eight 17-4PH samples were grounded and velvet polished by different mesh metallographic sandpaper to establish sample with different initial surface roughness. The water droplet erosion experiments were carried out in the highspeed jet water erosion experiment system, and the mass and micro-morphology of each sample were measured by using precision electronic balance and ultra-depth of field microscope respectively at each experimental stage, and the measurement of water erosion trace width and maximum water erosion depth were also completed at the same time. On the basis of experiments, LS-DYNA was used for numerical simulation to verify the reliability of experimental results again. Results show that the smoother the initial surface of sample, then the smaller the mass loss, the stronger its water erosion resistance. On the contrary, the rougher the initial surface of sample, the more severe the surface irregularity, the more times the water droplets concentrated at the lowest point of pit when water droplets flow laterally after impact is completed, thus accelerating the formation of initial crack and lateral expansion, the poorer the water erosion resistance of sample. At same water erosion time, the smoother the sample surface, the later the complete erosion trace appear, the narrower the water erosion trace width. However, the maximum water erosion depth of sample is not affected by the initial surface roughness. The numerical simulation results are in good agreement with the experimental results.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3