Performance Simulation of Roughness Induced Module Variations of a Jet Propulsion by Using Pseudo Bond Graph Theory

Author:

Göing Jan1,Bode Christoph1,Friedrichs Jens1,Seehausen Hendrik2,Herbst Florian2,Seume Joerg R.2

Affiliation:

1. Technische Universität Braunschweig, Lower Saxony, Germany

2. Leibniz Universität Hannover, Lower Saxony, Germany

Abstract

Abstract A scientific method is developed to determine the impact of a deteriorated HPC (high-pressure compressor) on the overall performance of a turbofan jet engine. Initially, the HPC performance with roughness variations on vanes and blades is simulated by using 3D CFD (Computational Fluid Dynamics) at different operating points. Afterwards, the overall performance of the full jet engine is computed by the in-house 1D performance tool ASTOR (AircraftEngine Simulation for Transient Operating Research). ASTOR is based on the Pseudo Bond Graph approach to model and connect miscellaneous components with the equations of motion and dynamic volumes. By solving this differential equation system, transient performance is calculated in higher accuracy compared to common Reduced Order Models (ROM). Transient load cases are modelled to analyse the impact of deteriorated HPC on the overall performance. Furthermore, similarities and differences to the steady performance are considered. The maximum deviation of EGT between an engine with a new and deteriorated HPC during a fast acceleration is 32% while it is 27% at steady operation. Also a trade-off between an increasing EGT and a decreasing pressure downstream of the LPT is analysed. Finally, relations between the engine performance, Reynolds-number and roughness are analysed to classify the performance drop due to a HPC with roughness.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3