A Study on Low Cycle Fatigue Life Assessment of Notched Specimens Made of 316 LN Austenitic Stainless Steel

Author:

Abarkan Ikram1,Khamlichi Abdellatif2,Shamass Rabee3

Affiliation:

1. SCD Laboratory, Department of Physics, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco

2. SCD Laboratory, ENSA Tetouan, Abdelmalek Essaadi University, Tetouan 93000, Morocco

3. Division of Civil and Building Services Engineering, School of the Built Environment and Architecture, London South Bank University, London SE1 0AA, UK

Abstract

Abstract The local strains obtained from the best-known analytical approximations, namely, Neuber's rule, equivalent strain energy density method, and linear rule, were compared with those resulting from finite element analysis. It was found that apart from Neuber's rule with the elastic stress concentration factor Kt, all the aforementioned analytical methods underestimate the local strains for all notch root radius, strain amplitude levels, at room temperature and 550 °C. Neuber's rule with Kt slightly overestimates the maximum strains for lower notch root radius, namely, 1.25 mm, at high temperature. Based on the analytically and numerically obtained notch root strains, the fatigue lives were estimated using the Coffin–Manson–Basquin equation. Besides, a numerical assessment of fatigue lives was made based on Brown–Miller and maximum shear strain multi-axial fatigue life criteria. It was found that all these methods provide inaccurate fatigue life results for all notch root radius, strain amplitude level, and under both temperatures conditions. Therefore, a new method was suggested, for which only the applied strain amplitude is needed to calculate the fatigue life of notched components. It was revealed that the suggested method provides a good fatigue life prediction at a higher temperature loading state.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference49 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3