Direct Measurements of Skin Friction in Supersonic Combustion Flow Fields

Author:

Chadwick K. M.1,DeTurris D. J.1,Schetz J. A.1

Affiliation:

1. Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Abstract

An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to measure simultaneously an axial and a transverse component of the small tangential shear force passing over a nonintrusive floating element. This measurement was made possible with a sensitive piezoresistive deflection sensing unit. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in). This allowed the instrument to be a nonnulling type. A second gage was designed with active cooling of the floating sensor head to eliminate nonuniform temperature effects between the sensor head and the surrounding wall. The key to this device is the use of a quartz tube cantilever with piezoresistive strain gages bonded directly to its surface. A symmetric fluid flow was developed inside the quartz tube to provide cooling to the backside of the floating head. Tests showed that this flow did not influence the tangential force measurement. Measurements were made in three separate combustor test facilities. Tests at NASA Langley Research center consisted of a Mach 3.0 vitiated air flow with hydrogen fuel injection at Pt = 500 psia (3466 kPa) and Tt = 3000 R (1667 K). Two separate sets of tests were conducted at the General Applied Science Laboratory (GASL) in a scramjet combustor model with hydrogen fuel injection in vitiated air at Mach = 3.3, Pt = 800 psia (5510 kPa), and Tt = 4000 R (2222 K). Skin friction coefficients between 0.001–0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within ± 10–15 percent of the streamwise component.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Invited Article: Local shear stress transduction;Review of Scientific Instruments;2010-02

2. Direct Measurement of Skin Friction in Complex Flows;48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition;2010-01-04

3. Design and Testing of Fiber-Optic Wall Shear Gauge for Hot Flows;AIAA Journal;2006-06

4. Skin Friction Measurements in Complex Turbulent Flows Using Direct Methods;Engineering Turbulence Modelling and Experiments 6;2005

5. Direct Measurement of Skin Friction in Complex Flows Using Movable Wall Elements;24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference;2004-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3