Methods for Characterizing Convective Cryoprobe Heat Transfer in Ultrasound Gel Phantoms

Author:

Etheridge Michael L.1,Choi Jeunghwan2,Ramadhyani Satish3,Bischof John C.4

Affiliation:

1. Department of Mechanical Engineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455

2. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

3. Galil Medical Inc., Arden Hills, MN 55112

4. Department of Mechanical Engineering, Department of Biomedical Engineering, Department of Urologic Surgery, University of Minnesota, Minneapolis, MN 55455

Abstract

While cryosurgery has proven capable in treating of a variety of conditions, it has met with some resistance among physicians, in part due to shortcomings in the ability to predict treatment outcomes. Here we attempt to address several key issues related to predictive modeling by demonstrating methods for accurately characterizing heat transfer from cryoprobes, report temperature dependent thermal properties for ultrasound gel (a convenient tissue phantom) down to cryogenic temperatures, and demonstrate the ability of convective exchange heat transfer boundary conditions to accurately describe freezing in the case of single and multiple interacting cryoprobe(s). Temperature dependent changes in the specific heat and thermal conductivity for ultrasound gel are reported down to −150 °C for the first time here and these data were used to accurately describe freezing in ultrasound gel in subsequent modeling. Freezing around a single and two interacting cryoprobe(s) was characterized in the ultrasound gel phantom by mapping the temperature in and around the “iceball” with carefully placed thermocouple arrays. These experimental data were fit with finite-element modeling in COMSOL Multiphysics, which was used to investigate the sensitivity and effectiveness of convective boundary conditions in describing heat transfer from the cryoprobes. Heat transfer at the probe tip was described in terms of a convective coefficient and the cryogen temperature. While model accuracy depended strongly on spatial (i.e., along the exchange surface) variation in the convective coefficient, it was much less sensitive to spatial and transient variations in the cryogen temperature parameter. The optimized fit, convective exchange conditions for the single-probe case also provided close agreement with the experimental data for the case of two interacting cryoprobes, suggesting that this basic characterization and modeling approach can be extended to accurately describe more complicated, multiprobe freezing geometries. Accurately characterizing cryoprobe behavior in phantoms requires detailed knowledge of the freezing medium's properties throughout the range of expected temperatures and an appropriate description of the heat transfer across the probe's exchange surfaces. Here we demonstrate that convective exchange boundary conditions provide an accurate and versatile description of heat transfer from cryoprobes, offering potential advantages over the traditional constant surface heat flux and constant surface temperature descriptions. In addition, although this study was conducted on Joule–Thomson type cryoprobes, the general methodologies should extend to any probe that is based on convective exchange with a cryogenic fluid.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3