Simulation of a Mortar Launched, Parachute Deployed Battlefield Imaging System

Author:

Frost Geoffrey1,Costello Mark1

Affiliation:

1. Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331

Abstract

Flight behavior of a mortar launched, parachute deployed imaging system is examined with particular attention to characterizing the quantity and quality of recorded image data. Coverage area of the imager, blur due to motion of the imager, and view time are evaluated for different system configurations allowing important design parameters to be identified. It is shown that proper tailoring of the dynamic characteristics of the system greatly improves gathered image data quantity and quality. Coning of the canister is an important system characteristic that largely drives total ground coverage. Canister coning is influenced in a complex manner by system geometric parameters. Mounting the parachute riser to the canister in such a way that the connection is off the axis of symmetry of the canister is a powerful technique to increase coning of the canister. Likewise, increasing riser length also yields increased coning. Increasing spin rate of the canister leads to a proportional increase in image blur, which is largest toward the edge of the image. Also, increased canister weight tends to increase the descent rate, which reduces total view time. At the same time, increased descent rate increases the spin rate for cross type parachutes, leading to increased image blur.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supporting mechanism design of parachutes for 2.4m×2.4m transonic wind tunnel in CARDC;IOP Conference Series: Materials Science and Engineering;2020-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3