An Investigation of the Impacts of Contact Parameters on Wear Coefficient

Author:

Janakiraman V.1,Li S.2,Kahraman A.1

Affiliation:

1. The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210

2. Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435 e-mail:

Abstract

In this study, the wear depths under different loads, speeds, lubricant temperatures, and surface roughness amplitudes are experimentally determined using a twin-disk rolling contact setup. A point contact wear model combining a contact formulation and Archard's wear equation in an iterative manner is developed to simulate the wear process of the experiments. By matching the measured and predicted wear profiles, the wear coefficients under different operating and surface conditions are determined. It is found that the wear coefficient increases when either the load or the surface roughness amplitude increases and decreases as the lubricant pressure-viscosity coefficient increases. Within the operating ranges considered, it is observed that the lubricant pressure-viscosity coefficient is the most influential parameter on wear, the load has the least impact, and the surface roughness amplitude is in between. Lastly, a regression formula is given for the estimation of Archard's wear coefficient.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference27 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3