Affiliation:
1. Department of Mechanical and Aerospace Engineering, Old Dominion University , Norfolk, VA 23529
Abstract
Abstract
Pulsatile pressure at an artery is a collection of harmonics of the heartbeat. This study examines harmonics of pulsatile pressure at different ages and its effect on other pulsatile parameters and waveform-based clinical indices. Based on a vibrating-string model of the arterial tree, wave velocity and characteristic impedance are related to arterial stiffness and radius. Blood velocity, wall shear stress (WSS), and driving force on the left ventricle (LV) are related to pulsatile pressure. Reflection magnitude and return time are related to input impedance. These relations are applied to pulsatile pressure and blood velocity at the ascending aorta (AA) and the carotid artery (CA) at different ages in a database to calculate harmonics of all the pulsatile parameters and reflection magnitude and return time at each harmonic. Harmonics of pulsatile pressure varies with aging and between the two arteries. Reflection magnitude and return time vary between harmonics. While wave reflection manifests the arterial tree (i.e., arterial stiffness and radius) and termination, harmonics of pulsatile pressure is a combination of the LV, the arterial tree, and termination. Harmonics of pulsatile pressure dictates harmonics of WSS and affects endothelial function. Harmonics of pulsatile pressure needs to serve as an independent clinical index indicative of the LV function and endothelial function. Reflection magnitude and return time of the 1st harmonic of pulsatile pressure serve as clinical indices indicative of arterial stiffness and radius.
Funder
Directorate for Engineering
Subject
General Earth and Planetary Sciences,General Environmental Science