A Novel Non-Intrusive Imaging Technique to Quantify Shrinkage of Elephant Foot Yam During Convective Drying

Author:

Singh Punit12,Chakraborty Saurav3,Talukdar Prabal4

Affiliation:

1. Indian Institute of Technology Delhi Department of Mechanical Engineering, , New Delhi 110016 , India ;

2. GLA University Mathura Institute of Engineering and Technology, Department of Mechanical Engineering, , Uttar Pradesh 281406 , India

3. Birla Institute of Technology Mesra Department of Mechanical Engineering, , Ranchi 835215, Jharkhand , India

4. Indian Institute of Technology Delhi Department of Mechanical Engineering, , New Delhi 110016 , India

Abstract

Abstract The current work discusses the design and development of a novel convective drying system which predicts both the drying and the shrinkage characteristics of any food material simultaneously at different drying air velocities and temperatures. In the present work, the shrinkage characteristics of a cylindrical-shaped Elephant Foot Yam (EFY) food sample are determined by a non-intrusive imaging method. The top- and side-view images of the EFY sample at drying air velocities of 2, 4, and 6 m/s and at air temperatures of 313, 323, and 333 K are captured and processed using an in-house image processing code. The shrinkage characteristics reveal the nature of the transient variation of the bulk volume and the bulk density of the EFY with its moisture content. Suitable correlations developed for the bulk volume of the EFY suggest that it varies quadratically with moisture content, whereas the bulk density varies exponentially with moisture content for all drying conditions. It was also found that the developed methodology can predict the transient volume and density of the drying EFY sample for different cases of air velocities and temperature with significant accuracies.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3