Performance Improvement for Proton Exchange Membrane Fuel Cell Using Hydrogen Pressure Pulsation Approach

Author:

Jia Qiuhong12,Zhang Caizhi3,Deng Bin4,Han Ming5

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China;

2. School of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China e-mail:

3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore e-mail:

4. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China e-mail:

5. Clean Energy Center, Temasek Engineering School, Temasek Polytechnic, Singapore 529757, Singapore e-mail:

Abstract

In a proton exchange membrane fuel cell (PEMFC), the hydrogen feed into the anode in a periodical pressure swing, so-called hydrogen pressure pulsation feed (HPPF), significantly affects the transport phenomena of hydrogen and water in the anode flow field. HPPF could adjust the distribution of the back diffusion water and the hydrogen partial pressure along the anode flow channels, improve hydrogen mass transfer in the anode flow field, and enhance the diffusion of hydrogen in the porous medium (anode diffusion layer). On the other hand, HPPF technique could mitigate the anode flooding issue caused by water back diffusion from the cathode, improve the fuel cell performance. In this work, the principle of HPPF technique was introduced and analyzed by a mathematic approach. Some of the important parameters used in HPPF technique, such as amplitude of pulsation pressure, pulsating frequency, etc., were experimentally investigated on dead-end mode PEMFC stack. The experimental results showed that the amplitude of pressure pulsation, pulsating frequency, and position applied for HPPF highly affected the performance of the PEMFC stack. It can be seen that higher the frequency and/or amplitude of pressure pulsation, the better the performance of PEMFC stack.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3