Evaluation of Two Measurement Techniques to Quantify Fuel–Air Mixing of a Gas Turbine Premixer at Atmospheric Conditions

Author:

Estefanos Wessam1,Hamza Mahmoud1,Bhayaraju Umesh1,Jeng San-Mou1

Affiliation:

1. Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221 e-mail:

Abstract

In the present study, two measurement techniques are adopted to evaluate the fuel–air mixing under atmospheric conditions using an industrial fuel–air premixer. These techniques are CO2 mixing and planar laser induced fluorescence (PLIF) in water. In these techniques, CO2 and fluorescent dye are injected as fuel simulants. CO2 measurements are used to validate PLIF in water. In the CO2 technique, CO2 concentrations are converted to fuel mass fractions, whereas in the PLIF technique, a modified post processing method is used to convert the LIF signal into fuel mass fraction. The experiments are conducted at the same Reynolds number and momentum flux ratio for two injection strategies. To study the effect of the flow aerodynamics on the mixing results, high-speed particle image velocimetry (PIV) measurements are conducted in water at the same Reynolds number. A comparison of fuel concentrations measured with the CO2 and PLIF techniques shows good quantitative agreement at all momentum flux ratios. However, deviations between the two techniques are observed at locations of high fuel concentration gradients. The unsteady mixing is evaluated using the PLIF technique with high temporal resolution. Analysis of PIV and PLIF data shows that unsteady mixing is lower at regions of high fluctuations in velocity. Moreover, it is found that there is high unsteady mixing at locations of high concentration gradient.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference14 articles.

1. A Review of NOx Formation Under Gas-Turbine Combustion Conditions;Combust. Sci. Technol.,1991

2. The Role of Fuel Preparation in Low-Emission Combustion;ASME J. Eng. Gas Turbines Power,1995

3. Dry Low Nox Combustion Systems for GE Heavy-Duty Gas Turbines,1996

4. The Oxidation of Nitrogen in Combustion and Explosions;Acta Physicochim.,1946

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3