Measurement of Transitional Surface Roughness Effects on Flat-Plate Boundary Layer Transition

Author:

Jeong Heechan1,Lee Seung Woo1,Song Seung Jin23

Affiliation:

1. Mechanical Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea e-mail:

2. Mechanical Engineering;

3. Institute of Advanced Machines and Design, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea e-mail:

Abstract

An experimental study has been conducted to investigate the effects of transitionally rough surface on the flat-plate boundary layer transition. Transitional boundary layers with three different flat plates (ks+ = 0.07 ∼ 0.19, 2.71 ∼ 7.05, and 13.65 ∼ 41.09) have been measured with a single-sensor hot-wire probe. All of the measurements have been conducted under zero pressure gradient (ZPG) at the fixed Reynolds number (ReL) and freestream turbulence intensity (Tu) of 3.05 × 106 and 0.2%. Transitionally, rough surface does not affect the sigmoidal distribution of turbulence intermittency model; but induces earlier transition onset and shortens the transition length. For all surfaces, streamwise turbulence intensity profiles with similar values of turbulence intermittency are similar for the transition length less than 60%. Therefore, mean velocity profiles with the similar values of turbulence intermittency are similar regardless of surface conditions. However, downstream of 60% of the transition length, mean velocity defect increases as the surface roughness increases. Enhanced diffusion of turbulent kinetic energy from the near wall (y/δ < 0.1) to the outer part (y/δ ≈ 0.4) of the boundary layer due to the surface roughness is responsible for the increased momentum deficit.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3