Highly Directional Acoustic Waves Generated by a Horned Parametric Acoustic Array Loudspeaker

Author:

Tong L. H.1,Lai S. K.2,Yan J. W.3,Li C.4

Affiliation:

1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, Jiangxi, China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China e-mail:

3. Key Laboratory of Product Packaging and Logistics of Guangdong, Higher Education Institutes, Jinan University, Zhuhai 519070, Guangdong, China

4. School of Urban Rail Transportation, Soochow University, Suzhou 215131, Jiangsu, China

Abstract

Acoustic horns can enhance the overall efficiency of loudspeakers to emanate highly directional acoustic waves. In this work, a theoretical model is developed to predict difference frequency acoustic fields generated by a parametric array loudspeaker (PAL) with a flared horn. Based on this model, analytical solutions are obtained for exponentially horned PALs. A numerical analysis on the performance of horned PALs subject to various horn parameters (i.e., horn length and flare constant) is implemented. To compare with nonhorned parametric acoustic array (PAA) devices, it is able to generate highly directional acoustic wave beams for a wide range of difference frequencies, in which the generated sound pressure levels at low frequencies can be significantly enhanced. In addition, the equivalent radius of a nonhorned emitter that matches the directivity achieved by a horned one is also quantitatively investigated. The present research will provide useful guidelines for the design and optimization of horned parametric array equipment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Natural Science Foundation of Jiangxi Province

Environment and Conservation Fund

Publisher

ASME International

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3