Numerical Benchmark of Nonconventional RANS Turbulence Models for Film and Effusion Cooling

Author:

Bianchini Cosimo1,Andrei Luca,Andreini Antonio,Facchini Bruno2

Affiliation:

1. e-mail:

2. Energy Engineering Department “S.Stecco,” University of Florence, via di S. Marta 3, 50139 Florence, Italy

Abstract

Over the course of the years, several turbulence models specifically developed to improve the predicting capabilities of conventional two-equations Reynolds-averaged Navier–Stokes (RANS) models have been proposed. They have, however, been mainly tested against experiments only comparing with standard isotropic models, in single hole configuration and for very low blowing ratio. A systematic benchmark of the various nonconventional models exploring a wider range of application is hence missing. This paper performs a comparison of three recently proposed models over three different test cases of increasing computational complexity. The chosen test matrix covers a wide range of blowing ratios (0.5–3.0) including both single row and multi-row cases for which experimental data of reference are available. In particular the well-known test by Sinha et al. (1991, “Film-Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio,” J. Turbomach., 113, pp. 442–449) at BR = 0.5 is used in conjunction with two in-house carried out experiments: a single row film-cooling test at BR = 1.5 and a 15 rows test plate designed to study the interaction between slot and effusion cooling at BR = 3.0. The first two considered models are based on a tensorial definition of the eddy viscosity in which the stream-span position is augmented to overcome the main drawback connected with standard isotropic turbulence models that is the lower lateral spreading of the jet downwards the injection. An anisotropic factor to multiply the off diagonal position is indeed calculated from an algebraic expression of the turbulent Reynolds number developed by Bergeles et al. (1978, “The Turbulent Jet in a Cross Stream at Low Injection Rates: A Three-Dimensional Numerical Treatment,” Numer. Heat Transfer, 1, pp. 217–242) from DNS statistics over a flat plate. This correction could be potentially implemented in the framework of any eddy viscosity model. It was chosen to compare the predictions of such modification applied to two among the most common two-equation turbulence models for film-cooling tests, namely the two-layer (TL) model and the k–ω shear stress transport (SST), firstly proposed and tested in the past respectively by Azzi and Lakeal (2002, “Perspectives in Modeling Film Cooling of Turbine Blades by Transcending Conventional Two-Equation Turbulence Models,” J. Turbomach., 124, pp. 472–484) and Cottin et al. (2011, “Modeling of the Heat Flux For Multi-Hole Cooling Applications,” Proceedings of the ASME Turbo Expo, Paper No. GT2011-46330). The third model, proposed by Holloway et al. (2005, “Computational Study of Jet-in-Crossflow and Film Cooling Using a New Unsteady-Based Turbulence Model,” Proceedings of the ASME Turbo Expo, Paper No. GT2005-68155), involves the unsteady solution of the flow and thermal field to include the short-time response of the stress tensor to rapid strain rates. This model takes advantage of the solution of an additional transport equation for the local effective total stress to trace the strain rate history. The results are presented in terms of adiabatic effectiveness distribution over the plate as well as spanwise averaged profiles.

Publisher

ASME International

Subject

Mechanical Engineering

Reference34 articles.

1. Film Cooling;Adv. Heat Transfer,1971

2. A Round Jet Normal to a Crossflow;ASME J. Fluids Eng,1981

3. Galeazzo, F. C. C., Donnert, G., Habisreuther, P., Zarzalis, N., Valdes, R. J., and Krebs, W., 2010, “Measurement and Simulation of Turbulent Mixing in a Jet in Crossflow,” Proceedings of the ASME Turbo Expo, Glasgow, UK, June 14–18, ASME Paper No. GT2010-22709.10.1115/GT2010-22709

4. LES of Jets in Cross Flow and Its Application to a Gas Turbine Burner;Flow, Turbul. Combust.,2001

5. An Adiabatic Homogeneous Model for the Flow Around a Multi-Perforated Plate;AIAA J.,2008

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3