Study of Electroencephalograph-Based Evaluation Method of Car Sound Quality

Author:

Xie Liping12,Lu Chihua12,Liu Zhien12,Zhu Yawei12,Xu Tao12

Affiliation:

1. Wuhan University of Technology Hubei Key Laboratory of Advanced Technology for Automotive Components, , Wuhan 430070 , China ;

2. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory , Foshan 528200 , China

Abstract

Abstract Those methods that are applied to evaluate car sound quality by means of the scoring mode cannot guarantee the universality of results. Some studies have shown that the sound-induced change of electroencephalograph (EEG) can reflect human cerebral activities and mental perceptions. Thus, EEG is introduced here to evaluate the car sound quality, and a new method is put forward to map the powerful sound quality on account of EEG-based physiological acoustic index (EPAI). Twelve types of EEG features are selected in views of time and frequency domains and entropy feature to establish the feature matrix, and the difference of car sounds with the powerful sound quality are identified by means of five classifiers. Then, the correlation between the powerful sound quality and 12 types of EEG features is further analyzed to screen out the effective EEG features that are strongly related to the powerful car sound quality. Subsequently, seven EPAIs are defined by means of regression model based on three effective EEG features, which are the second-order difference (SOD), power spectral density (PSD) of gamma (PSD_γ), and differential entropy (DE), respectively. Our results show that the support vector machine (SVM) and linear discriminant analysis (LDA) models can be applied to effectively identify the difference of powerful car sounds, and the correlations between SOD, PSD_γ, and DE and the powerful sound quality are high, which are up to 0.86, 0.88, and 0.85, respectively, and our EPAIs 1, 2, and 4 can map the powerful car sound quality where the EPAI 4 results in the best evaluation effect. It is also proved that our EPAIs can reflect the subjective perception of participants under stimulation of the powerful sound quality, and EEG can be used as an evaluation method of car sound quality.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3