Affiliation:
1. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China
2. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China e-mail:
Abstract
In this paper, the algorithm, Euler scheme-the modified velocity-verlet algorithm (ES-MVVA) based on dissipative particle dynamics (DPD) method, is applied to simulate a two-dimensional ferromagnetic colloidal suspension. The very desirable aggregate structures of magnetic particles are obtained by using the above-mentioned algorithm, which are in qualitatively good agreement with those in the literature obtained by other simulation methods for different magnetic particle–particle interaction strengths. At the same time, the radial distribution functions of magnetic particles and the mean equilibrium temperatures of the system are also calculated. Next, the mean equilibrium velocities of magnetic and dissipative particles are calculated, by comparing the results obtained by ES-MVVA with those obtained by other algorithm for different time step sizes, it shows the validity and good accuracy of the present algorithm. So, the DPD-based algorithm presented in this paper is a powerful tool for simulation of magnetic colloidal suspensions.
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献