Upper Level of a Sustainability Assessment Framework for Power System Planning

Author:

Cano-Andrade Sergio12,von Spakovsky Michael R.3,Fuentes Alejandro4,Lo Prete Chiara5,Mili Lamine6

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061;

2. Department of Mechanical Engineering, Universidad de Guanajuato, Salamanca, Guanajuato 36885, Mexico e-mails: ;

3. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 e-mail:

4. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

5. John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802

6. Bradley Department of Electrical and Computer Engineering, Northern Virginia Center, Virginia Tech, Falls Church, VA 22043

Abstract

This paper describes the upper level of a two-tiered sustainability assessment framework (SAF) for determining the optimal synthesis/design and operation of a power network and its associated energy production and storage technologies. The upper-level framework is described, and results for its application to a test bed scenario given by the Northwest European electricity power network presented. A brief description of the lower level of the SAF is given as well. In order to analyze the impact of microgrids (MGs) in the main network, two different scenarios are considered in the analysis, i.e., a network without MGs and a network with MGs. The optimization is carried out in a multi-objective, quasi-stationary manner with producer partial-load behavior taken into account via nonlinear functions for efficiency, cost, and emissions that depend on the electricity generated by each nonrenewable or renewable producer technology. Results indicate for the particular problem posed and for the optimal configurations found that including MGs improves the network relative to reductions in capital and operating costs and to increases in network resiliency. On the other hand, total daily SO2 emissions and network exergetic efficiency are not improved for the case when MGs are included.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3