The Turbulent Incompressible Jet in a Curved Coflow

Author:

O¨tu¨gen M. V.1,Girlea F.1,Sforza P. M.1

Affiliation:

1. Polytechnic University, Mechanical, Aerospace and Manufacturing Engineering, Six Metrotech Center, Brooklyn, NY 11201

Abstract

The effects of small streamline curvature on the growth and axial flow development of a turbulent incompressible jet in a curved coflow was investigated experimentally. The jet streamline curvature was achieved by introducing the initially round jet tangentially into a stream flowing through a curved channel of square cross-section. The jet issued from a straight pipe and had a fully developed velocity profile at the exit plane. The jet Reynolds number and the coflow-to-jet-velocity ratio were 4300 and 0.11, respectively. A single component laser Doppler anemometer was used to measure the streamwise velocity. Axial mean velocity and turbulence intensity profiles were measured at various streamwise locations in both the plane of curvature and the surface perpendicular to the plane of curvature. The results indicate that the jet growth and turbulence intensity are influenced by the small streamline curvature. The growth rate of the curved jet in the plane of curvature is slightly increased compared to that of a straight jet. However, the growth of the same curved jet is suppressed in the plane perpendicular to the plane of curvature. In the plane of curvature, the inner jet half-width is larger than the outer jet half-width. The mean velocity profiles in this plane are nearly Gaussian when the lateral distance is normalized by the respective inner and outer side jet half-widths. The axial turbulence intensity profiles show asymmetry in the plane of curvature with a pronounced peak on the outer side of the jet.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow Characteristics of Splined Tipped Circular Jets;Journal of Fluids Engineering;1998-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3