Characteristics of Self-Excited Vibration of Vertical Rotating Shaft System Considering Amplitude Dependent Nonlinearity of Sliding Bearing

Author:

Watanabe Yusuke1,Inoue Tsuyoshi2

Affiliation:

1. EBARA Corporation , Fujisawa, Kanagawa 251-8502 , Japan

2. Nagoya University Department of Mechanical Systems Engineering, , Nagoya, Aichi 464-8603 , Japan

Abstract

Abstract Journal sliding bearings are often used to support rotating machinery to add damping and increase load capacity. These bearings have strong nonlinearities that can cause vibration problems. Various studies have been conducted on vibration phenomena caused by nonlinearities in journal sliding bearings. However, most of these studies have been on horizontally supported rotating machines. Some of these techniques are difficult to apply to vertically supported rotating machines. The most significant difference between horizontal and vertical support is that the weight of the rotor does not act on the journal sliding bearing in the case of vertical support. Therefore, it is not appropriate to use the horizontal journal sliding bearing theory based on the equilibrium point for the vertical shaft rather it should be considered based on the whirling orbit. In this paper, the nonlinear rotor dynamics of vertical rotating machines with journal sliding bearings are investigated and evaluated by theoretical and numerical analyses and experiments of a simple vertical rotating shaft. As a result, some new destabilization and stabilization phenomena are found in the vertical shaft system, and it is clarified that they cannot be predicted by the conventional linear analysis around the equilibrium point but can be predicted by the nonlinear dynamical analysis of the whirling orbit. Particularly, these destabilization and stabilization phenomena of the vertical shaft system are strongly affected by the magnitude of the vibration in the journal sliding bearing due to its nonlinearity, and the unbalance of the rotating body can be a parameter to control them.

Publisher

ASME International

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3