Predictive Modeling of Local Film-Cooling Flow on a Turbine Rotor Blade

Author:

DeShong Eric T.1,Berdanier Reid A.1,Thole Karen A.1

Affiliation:

1. Pennsylvania State University Department of Mechanical Engineering, , 3127 Research Drive, State College, PA 16801

Abstract

Abstract In the turbine section of a modern gas turbine engine, components exposed to the main gas path flow rely on cooling air to maintain hardware durability targets. Therefore, monitoring turbine cooling flow is essential to the diagnostic and prognostic efficacy of a condition-based operation and maintenance (CBOM) approach. This study supports CBOM goals by leveraging supervised machine learning to estimate relative changes to local film-cooling flowrate using surface temperature measured on the pressure side of a rotating turbine blade operating at engine-relevant aerothermal conditions. Throughout the lifetime of a film-cooled turbine component, characteristics of the film-cooling flow—such as film trajectory and cooling effectiveness—vary as degradation-driven geometry distortions occur, which ultimately affects the relationship between the model input and the model output—film-cooling flowrate predictions. The present study addresses this complication by testing a data-driven model on multiple turbine blades of the same nominal design, but with each blade exhibiting different localized film-cooling flow characteristics. By testing the model in this manner, strategies for mitigating the detrimental effects of film-cooling flow characteristic variations on model performance were investigated, and the corresponding flowrate prediction accuracy was quantified.

Publisher

ASME International

Subject

Mechanical Engineering

Reference24 articles.

1. Gas Turbine Film Cooling;Bogard;J. Propuls. Power,2006

2. Gas Turbine Technology Evolution: A Designer’s Perspective;Koff;J. Propuls. Power,2004

3. Gas Turbine Blade Failures—Causes, Avoidance, and Troubleshooting;Meher-Homji,1998

4. Agilis,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3