Predicting Incipient Jumps to Resonance of Compliant Marine Structures in an Evolving Sea-State

Author:

Bishop S. R.1,Leung L. M.1,Virgin L. N.1

Affiliation:

1. London Centre for Marine Technology, Department of Civil Engineering, University College, London, U.K.

Abstract

When monitoring the wave-driven motions of a compliant offshore facility, be it an articulated mooring tower or a vessel, the engineer would like to be able to predict, in real time, any incipient jump to resonance that might be imminent due to the slowly evolving sea-state. We explore in this paper a study of some new possible prediction techniques for both a jump to a main fundamental resonance leading to capsize and a flip bifurcation to a subharmonic resonance. Stroboscopic Poincare´ mapping techniques based on discrete time sampling are used to give information about the approach to instability. The first application of these techniques is in the prediction of the jump in resonance and consequent capsize at a cyclic fold in the roll response of a vessel in regular beam seas. Secondly, the techniques are shown to work extremely well in a variety of computational situations when applied to the simulation of an articulated mooring tower during the approach to the potentially dangerous oscillations produced by the onset of subharmonic resonance at a flip bifurcation, in both regular and irregular ocean waves.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3