Elasticity of the Porcine Lens Capsule as Measured by Osmotic Swelling

Author:

Powell Tracy A.1,Amini Rouzbeh1,Oltean Alina1,Barnett Vincent A.2,Dorfman Kevin D.3,Segal Yoav4,Barocas Victor H.1

Affiliation:

1. Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455

2. Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455

3. Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455

4. Department of Medicine, University of Minnesota, Minneapolis, MN; Minneapolis VA Medical Center, Minneapolis, MN 55417

Abstract

Abstract As an alternative to purely mechanical methods, optical tracking of passive osmotic swelling was used to assess mechanical properties of the porcine lens capsule. A simple model was developed accounting for the permeability of the lens fiber cells and capsule to water, the concentration of fixed charges in the fiber cells, and the capsule’s resistance to the swelling of fiber cells. Fitting the model solution to experimental data provided an estimate of the elastic modulus of the lens capsule under the assumption of linear isotropic elasticity. The calculated elastic modulus at a fixed charge density of 20 mol m−3 was 2.0±0.5 MPa (mean±95% confidence interval; n=15) for 0.1% saline solution, 0.64±0.3 MPa(n=10) for 0.2% saline solution, and 0.28±0.5 MPa(n=6) for 0.5% saline solution. These values are comparable to previously reported moduli of elasticity for the porcine lens capsule at small strains (<10%), and the slight increase with hypotonicity is consistent with the nonlinear mechanical behavior of the lens capsule. Although limited by being a single measurement on a heterogeneous tissue, osmotic swelling provides a quantitative assessment of the stiffness of the lens capsule without requiring dissection or manipulation of the lens. Thus, the new method could be useful for small animal models.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3