Effects of Cutting Force on Formation of Subsurface Damage During Nano-Cutting of Single-Crystal Tungsten

Author:

Wang Hao1,Guo Xiaoguang1,Dong Zhigang1,Yuan Song1,Bao Yan1,Kang Renke1

Affiliation:

1. Dalian University of Technology Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, , No. 2, Linggong Road, Ganjingzi District, Dalian City, Liaoning Province 116024 , China

Abstract

Abstract Single-crystal tungsten is widely utilized in various fields, benefiting from its outstanding properties. Nano-cutting, as an ultra-precision machining method, can realize high efficiency and low damage. However, from the atomic perspective, the formation mechanism of subsurface damage during the nano-cutting of tungsten is still unclear. Herein, the molecular dynamics (MD) simulation of nano-cutting single-crystal tungsten was established to elucidate the evolution of subsurface damage and the effects of cutting force on subsurface damage. The corresponding results showed the existence of damage including atomic cluster, vacancy defect, “V-shaped” dislocation, stair-rod dislocation, and dislocation ring on the subsurface during the cutting. There were dislocation lines in 1/2<111>, <100>, <110>, and other directions due to plastic deformation dominated by dislocation slip, and the 1/2<111> dislocation lines could be merged into stable <100> dislocation lines under certain circumstances during the cutting. The variation of cutting force and cutting force fluctuation induced by changing cutting parameters had a great influence on the subsurface damage of tungsten, including the number of surface defect atoms, dislocation density, and thickness of the subsurface damage layer. In nano-cutting of single-crystal tungsten, a smaller cutting depth and appropriate cutting speed should be selected to reduce subsurface damage. This study provides an insight into the evolution mechanism of subsurface damage of tungsten and is high of significance for achieving low-damage machining of tungsten components.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3