Observations of Material Behavior Under Isothermal and Thermo-Mechanical Loading

Author:

Sehitoglu Huseyin1,Karasek M.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801

Abstract

Deformation and damage behavior of a 1070 steel (class U wheel steel) under thermo-mechanical and isothermal loading have been examined. Fatigue lives under thermo-mechanical and isothermal loading were compared for similar conditions of strain and temperature. For most cases, maximum tensile stresses developed in thermo-mechanical tests exceeded those obtained under isothermal conditions (at Tmin) for the same strain amplitude. Cyclic hardening was observed at 200 to 300°C in isothermal tests. Under thermo-mechanical loading, static strain aging resulted in added hardening due to alternate exposure of the material to high and low temperatures. When thermal recovery effects become dominant at the high temperature end, strengthening upon cooling was suppressed. Oxide scales readily formed at high temperatures (≥400°C) and resulted in an increase in damage accumulation rates. Oxygen penetration into crack flanks and the ensuing loss of carbon was identified using Auger spectroscopy. The severity of oxide penetration into the base metal increased with increase in surface crack density, longer oxidation times and higher temperatures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3