Simulating Ice-Sloping Structure Interactions With the Cohesive Element Method

Author:

Lu Wenjun1,Lubbad Raed1,Løset Sveinung1

Affiliation:

1. Sustainable Arctic Marine and Coastal Technology (SAMCoT), Centre for Research-Based Innovation (CRI), Norwegian University of Science and Technology, Høgskoleringen 7A, 7491, Trondheim, Norway e-mail:

Abstract

The major processes that occur when level ice interacts with sloping structures (especially wide structures) are the fracturing of ice and upcoming ice fragments accumulating around the structure. The cohesive zone method, which can simulate both fracture initiation and propagation, is a potential numerical method to simulate this process. In this paper, as one of the numerical methods based on the cohesive zone theory, the cohesive-element–based approach was used to simulate both the fracturing and upcoming fragmentation of level ice. However, simulating ice and sloping structure interactions with the cohesive element method poses several challenges. One often-highlighted challenge is its convergence issue. Numerous attempts by different researchers have been invested in this issue either to prove or improve its convergence. However, these researchers work in different fields (e.g., fracture of concrete, ceramic, or glass fiber) with different scales (e.g., from a ceramic ring to a concrete block). As an attempt to study the cohesive element method's application in the current ice-structure interaction context (i.e., an engineering scale up to hundreds of meters), the mesh dependency of the cohesive element method was alleviated by both creating a mesh with a crossed triangle pattern and utilizing a penalty method to obtain the initial stiffness for the intrinsic cohesive elements. Furthermore, two potential methods (i.e., introduction of a random ice field and bulk energy dissipation considerations) to alleviate the mesh dependency problem were evaluated and discussed. Based on a series of simulations with the different aforementioned methods and mesh sizes, the global ice load history is obtained. The horizontal load information is validated against the test results and previous simulation results. According to the comparison, the mesh objectivity alleviation with different approaches was discussed. As a preliminary demonstration, the results of one simulation are summarized, and the load contributions from different ice-structure interaction phases are illustrated and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference60 articles.

1. Predicting Ship Performance in Level Ice;SNAME Trans,1983

2. Naegle, J. N., 1980, “Ice-Resistance Prediction and Motion Simulation for Ships Operating in the Continuous Mode of Icebreaking,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3