Parameter Estimation of the FitzHugh–Nagumo Neuron Model Using Integrals Over Finite Time Periods

Author:

Concha Antonio1,Garrido Rubén2

Affiliation:

1. Instituto de Ingeniería, Universidad Nacional Autónoma de México, Coyoacán, D.F 04510, Mexico e-mail:

2. Professor Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Gustavo A. Madero, D.F 07360, Mexico e-mail:

Abstract

This paper proposes two methodologies for estimating the parameters of the FitzHugh–Nagumo (FHN) neuron model. The identification procedures use only measurements of the membrane potential. The first technique is named the identification method based on integrals and wavelets (IMIW), which combines a parameterization based on integrals over finite time periods and a wavelet denoising technique for removing the measurement noise. The second technique, termed as the identification method based only on integrals (IMOI), does not use any wavelet denoising technique and attenuates the measurement noise by integrating the IMIW parameterization two times more over finite time periods. Both procedures use the least squares algorithm for estimating the FHN parameters. Integrating the FHN model over finite time periods allows eliminating the unmeasurable recovery variable of this model, thus obtaining a parameterization based on integrals of the measurable membrane potential variable. Unlike an identification technique recently published, the proposed methods do not rely on the time derivatives of the membrane potential and are not limited to continuously differentiable input current stimulus. Numerical simulations show that both the IMIW and IMOI have a good and a similar performance, however, the implementation of the latter is simpler than the implementation of the former.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3