Turbulence Radiation Interaction: From Theory to Application in Numerical Simulations

Author:

Coelho Pedro J.1

Affiliation:

1. Technical University of Lisbon, Lisboa, Portugal

Abstract

Theoretical analysis and experimental investigations have shown that the mean heat fluxes in turbulent gaseous flows are influenced not only by the mean scalar fields (temperature and molar fraction of the species), but also by the scalar fluctuations. It is widely recognized that the increase of radiative fluxes in comparison with laminar flows may exceed 100%. This interaction between turbulence and radiation is mainly due to the non-linearity between radiative emission and temperature. It is particularly important in reactive flows, since temperature fluctuations are typically higher in these flows than in non-reactive ones. In this article, a survey of the theory concerning turbulence-radiation interaction (TRI) is presented, along with applications in numerical simulations. We firstly present experimental and theoretical fundamentals on TRI. Then, direct numerical simulation and stochastic methods are addressed. Although they provide reliable information on TRI, they are too computationally demanding for practical applications. We will then focus on methods based on the solution of the time-averaged form of the conservation equations. Although many different approaches are available, we will concentrate on two methods. One is based on the solution of the time-averaged form of the radiative transfer equation using the optically thin fluctuation approximation, and a combustion model based on a prescribed probability density function (pdf) approach. The second one is based on the photon Monte Carlo method for radiative transfer calculations in media represented by discrete particle fields, and a combustion model based on the Monte Carlo solution of the transport equation for the joint pdf of scalars. Finally, the role of TRI in large eddy simulation is discussed, and the main consequences of TRI in combustion systems are summarized.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing subfilter-scale turbulence–radiation interaction in a large-scale ethanol pool fire;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2021-05-16

2. Physical study of radiation effects on the boundary layer structure in a turbulent channel flow;International Journal of Heat and Mass Transfer;2013-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3