Characteristics of Flow and Flame Behavior Behind Rifled/Unrifled Nozzles

Author:

San Kuo C.1,Hsu Hung J.2

Affiliation:

1. Department of Aviation and Communication Electronics, Air Force Institute of Technology, Kaohsiung, Taiwan 820, R.O.C.

2. Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, Taiwan 202, R.O.C.

Abstract

A novel rifled nozzle was installed behind a conventional combustion exhauster to improve combustion efficiency. The rifled nozzles improve the momentum transmission, turbulent strength, and mixing efficiency between the central jet and annular jet. The flow characteristics behind the nozzles (rifled and unrifled) were visualized and detected using the smoke-wire flow visualization, particle image velocimetry, and hot-wire anemometry. The cold flow structures were categorized into four modes—jet flow, single bubble, dual bubble, and turbulent flow. The topological scheme was adopted to analyze and verify these flow modes. The flame structures behind the nozzles (rifled and unrifled) are classified into three modes—jet flame, flickering flame, and turbulent flame—using the direct-photo visualization. The flame height of a 12-rifled nozzle is decreased by about 50% under that of an unrifled nozzle. The flame shedding frequency declines rapidly in the flickering flame mode and the relationship between the Strouhal number (Sr) and annular velocity (ua) is Sr=0.0238+0.13/ua.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference30 articles.

1. A Swirling Round Turbulent Jet 1-Mean-Flow Measurements;Rose;ASME J. Appl. Mech.

2. Velocity and Static Pressure Distributions in Swirling Air Jets Issuing From Annular and Divergent Nozzles;Chigier;ASME J. Fluids Eng.

3. Flow in the Wake of Bluff-body Flame Stabilizers;Davies

4. Establishment of the Wake Behind a Disk;Carmody;ASME J. Basic Eng.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3