On the Natural Lubrication of Synovial Joints: Normal and Degenerate

Author:

Mansour Joseph M.1,Mow Van C.1

Affiliation:

1. Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute, Troy, N. Y.

Abstract

Fluid flow and mass transport mechanisms associated with articular cartilage function are important biomechanical processes of normal and pathological synovial joints. A three-layer permeable, two-phase medium of an incompressible fluid and a linear elastic solid are used to model the flow and deformational behavior of articular cartilage. The frictional resistance of the relative motion of the fluid phase with respect to the solid phase is given by a linear diffusive dissipation term. The subchondral bony substrate is represented by an elastic solid. The three-layer model of articular cartilage is chosen because of the known histological, ultrastructural, and biomechanical variations of the tissue properties. The calculated flow field shows that for material properties of normal healthy articular cartilage the tissue creates a naturally lubricated surface. The movement of the interstitial fluid at the surface is circulatory in manner, being exuded in front and near the leading half of the moving surface load and imbibed behind and near the trailing half of the moving load. The flow fields of healthy tissues are capable of sustaining a film of fluid at the articular surface whereas pathological tissues cannot.

Publisher

ASME International

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biotribology of natural joints;Biotribology of Natural and Artificial Joints;2023

2. Joint Lubrication and Wear;Biofabrication for Orthopedics;2022-09-30

3. Recent progress of bioinspired cartilage hydrogel lubrication materials;Biosurface and Biotribology;2022-09

4. Rheological and frictional analysis of viscosupplements towards improved lubrication of human joints;Tribology International;2021-08

5. Engineering and Technique of Experimental Tests of Liquid-Crystal Nanomaterials;Liquid-Crystal Nanomaterials;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3