Rapidly Deployable MTConnect-Based Machine Tool Monitoring Systems

Author:

Lynn Roby1,Louhichi Wafa1,Parto Mahmoud1,Wescoat Ethan1,Kurfess Thomas1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

The amount of data that can be gathered from a machining process is often misunderstood, and even if these data are collected, they are frequently underutilized. Intelligent uses of data collected from a manufacturing operation can lead to increased productivity and lower costs. While some large-scale manufacturers have developed custom solutions for data collection from their machine tools, small- and medium-size enterprises need efficient and easily deployable methods for data collection and analysis. This paper presents three broad solutions to data collection from machine tools, all of which rely on the open-source and royalty-free MTConnect protocol: the first is a machine monitoring dashboard based on Microsoft Excel; the second is an open source solution using Python and MTConnect; and the third is a cloud-based system using Google Sheets. Time studies are performed on these systems to determine their capability to gather near real-time data from a machining process.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Twin Modeling Enabled Machine Tool Intelligence: A Review;Chinese Journal of Mechanical Engineering;2024-05-19

2. Development of machine tool communication method and its edge middleware for cyber-physical manufacturing systems;International Journal of Computer Integrated Manufacturing;2023-01-01

3. Machine Tool Condition Monitoring System: A Review on Feasible Solution;2022 International Conference on Artificial Intelligence of Things (ICAIoT);2022-12-29

4. Machine learning-based real-time monitoring system for smart connected worker to improve energy efficiency;Journal of Manufacturing Systems;2021-10

5. MTConnect-based decision support system for local machine tool monitoring;Procedia Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3