Mapping and Enforcement of Minimally Restrictive Manufacturability Constraints in Mechanical Design

Author:

Patterson Albert E.12,Allison James T.3

Affiliation:

1. Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

2. Faculty of Manufacturing and Mechanical Engineering Technology, Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77840

3. Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

Abstract Traditional design-for-manufacturability (DFM) strategies focus on efficiency and design simplification and tend to be too restrictive for optimization-based design methods; recent advances in manufacturing technologies have opened up many new and exciting design options, but it is necessary to have a wide design space in order to take advantage of these benefits. A simple but effective approach for restricting the design space to designs that are guaranteed to be manufacturable is needed. However, this should leave intact as much of the design space as possible. Work has been done in this area for some specific domains, but a general method for accomplishing this has not yet been refined. This article presents an exploration of this problem and a developed framework for mapping practical manufacturing knowledge into mathematical manufacturability constraints in mechanical design problem formulations. The steps for completing this mapping and the enforcing of the constraints are discussed and demonstrated. Three case studies (a milled heat exchanger fin, a 3-D printed topologically optimized beam, and a pulley requiring a hybrid additive–subtractive process for production) were completed to demonstrate the concepts; these included problem formulation, generation and enforcement of the manufacturability constraints, and fabrication of the resulting designs with and without explicit manufacturability constraints.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3