Quasi-Three-Dimensional and Full Three-Dimensional Rotational Flow Calculations in Turbomachines

Author:

Wang Qinghuan1,Zhu Genxing1,Wu Chung-Hua1

Affiliation:

1. Institute of Engineering Thermophysics, Academia Sinica, Beijing, China

Abstract

Progress in the development of quasi-three-dimensional and full three-dimensional numerical solutions for steady subsonic rotational flow through turbomachines is presented. An iterative calculation between the flow on a mean hub-to-tip S2 stream surface and a number of blade-to-blade S1 stream surfaces gives the quasi-three-dimensional solution, which is very easily extended to give full three-dimensional solution by merely calculating a few more S2 surface flows and relaxing the restriction that S1 surfaces are surfaces of revolution. A new S2–S1 iteration scheme has been developed and employed in the present code. The governing equations on the S1 and S2 surfaces are expressed in terms of general nonorthogonal curvilinear coordinates so that they are body-fitted without any coordinate transformation and are solved by either matrix method or line-relaxation method. An automatic computing system is used, which first computes the quasi-three-dimensional flow for blade design and then computes the full three-dimensional flow for the blade row just designed. The results obtained by applying this computing system to the design and determination of full three-dimensional flow field of a two-stage axial compressor and a high subsonic compressor stator are obtained and shows clearly the amount of the twist of the general S1 surfaces and the difference in the flow field between the quasi-three-dimensional and full three-dimensional solutions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3