Integrating Compact Thermal Models in CFD Simulations of Electronic Packages

Author:

Gupta Rohit Dev12,Eswaran Vinayak2

Affiliation:

1. Student Mem. ASME

2. Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208 016, India

Abstract

Compact thermal models (CTMs) are simplified multi-nodal thermal resistor network representations of the detailed material and geometric structure of the electronic package. CTMs predict the thermal response of the package, in various environments, to within an accuracy of 2%. The junction temperature of the package is typically obtained by solving the linear algebraic network equations of the CTM, with the heat transfer to the ambience modeled by a convection coefficient obtained from handbooks, assuming identical ambient conditions imposed on all nodal surfaces. This approach may give misleading results as the ambience at each nodal surface can differ depending on the cooling flow patterns at that surface. In this work, a methodology is presented where the network equations of the CTM are integrated into the governing fluid flow and energy equations solved by computational fluid dynamics (CFD). The CTM+CFD approach predicts a significantly (20–30%) higher junction temperature as compared to the conventional CTM network solver method, even when the convection coefficient used in the latter case is obtained more accurately from CFD, rather than from handbook correlations. It is also found that CFD computations assuming uniform flux at the package surfaces (and ignoring the internal resistance of the package) vastly under-predict the junction temperature. The new approach offers a promising alternative for electronic package thermal design and is highly advantageous where the internal geometric and material configurations are not known due to proprietary concerns.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3