Influence of ATF Dynamics and Controls on Jet Engine Performance

Author:

Bierkamp J.1,Ko¨cke S.1,Staudacher S.1,Fiola Roland2

Affiliation:

1. Stuttgart University, Stuttgart, Germany

2. Rolls-Royce Deutschland Ltd. & Co. KG, Dahlewitz, Germany

Abstract

Current and future requirements in the verification and validation of the performance of modern aircraft engines lead to continuously increasing requirements on the transient performance capability and flexibility of Altitude Test Facilities (ATF). These requirements have been investigated via numerical simulations of a medium size turbofan and a modern core engine. The simulations using the turbofan engine, document a significant influence of the boundary conditions supplied by the ATF on the dynamic behaviour of bypass engines. Variations in engine acceleration times and compressor stability have been identified. This leads to stability requirements for entry conditions at Fan face and ambient conditions at the nozzle exit. The especially demanding operability tests with core engines, challenge ATF systems due to the additional need to simulate the behaviour of low pressure components. It turns out that the interaction between test vehicle and ATF, in both cases, requires special attention and great care in the design of the ATF control system. Therefore a closed loop simulation model including, ATF, ATF controls system, test vehicle and vehicle control has been developed in order to assess and evaluate the integrated ATF - test vehicle behaviour in advance of the test. The integration of the test vehicle and vehicle control into the modular simulation tool is described. The standardized interface allows integrating different vehicle types without a lot of effort. The application of the simulation in a core engine ATF test is described as an example. The observed vehicle - ATF interaction with and without control is discussed.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3